Willmore spacelike submanifolds in a Lorentzian space form

نویسندگان

  • Shichang Shu
  • Junfeng Chen
چکیده

Let N p (c) be an (n+p)-dimensional connected Lorentzian space form of constant sectional curvature c and φ : M → N p (c) an n-dimensional spacelike submanifold in N p (c). The immersion φ : M → N p (c) is called a Willmore spacelike submanifold in N p (c) if it is a critical submanifold to the Willmore functional W (φ) = ∫

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spacelike hypersurfaces in Riemannian or Lorentzian space forms satisfying L_k(x)=Ax+b

We study connected orientable spacelike hypersurfaces $x:M^{n}rightarrowM_q^{n+1}(c)$, isometrically immersed into the Riemannian or Lorentzian space form of curvature $c=-1,0,1$, and index $q=0,1$, satisfying the condition $~L_kx=Ax+b$,~ where $L_k$ is the $textit{linearized operator}$ of the $(k+1)$-th mean curvature $H_{k+1}$ of the hypersurface for a fixed integer $0leq k

متن کامل

Spacelike Willmore surfaces in 4-dimensional Lorentzian space forms

Spacelike Willmore surfaces in 4-dimensional Lorentzian space forms, a topic in Lorentzian conformal geometry which parallels the theory of Willmore surfaces in S, are studied in this paper. We define two kinds of transforms for such a surface, which produce the so-called left/right polar surfaces and the adjoint surfaces. These new surfaces are again conformal Willmore surfaces. For them holds...

متن کامل

SPACELIKE SUBMANIFOLDS IN INDEFINITE SPACE FORM Mn+p

Let Mn+p p (c) be n + p-dimensional connected semi-Riemannian manifold of constant curvature c whose index is p. It is called indefinite space form of index p. Let M be an n-dimensional Riemannian manifold immersed in Mn+p p (c). The semi-Riemannian metric of Mn+p p (c) induces the Riemannian metric of M , M is called a spacelike submanifold. Spacelike submanifolds in indefinite space form Mn+p...

متن کامل

Contributions to differential geometry of spacelike curves in Lorentzian plane L2

‎In this work‎, ‎first the differential equation characterizing position vector‎ ‎of spacelike curve is obtained in Lorentzian plane $mathbb{L}^{2}.$ Then the‎ ‎special curves mentioned above are studied in Lorentzian plane $mathbb{L}%‎‎^{2}.$ Finally some characterizations of these special curves are given in‎ ‎$mathbb{L}^{2}.$‎

متن کامل

Willmore Lagrangian Submanifolds in Complex Projective Space

Let M be an n -dimensional compact Willmore Lagrangian submanifold in a complex projective space CPn and let S and H be the squared norm of the second fundamental form and the mean curvature of M . Denote by ρ2 = S−nH2 the non-negative function on M , K and Q the functions which assign to each point of M the infimum of the sectional curvature and Ricci curvature at the point. We prove some inte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014